
Ecology and Evolution. 2017;1–15.	 		 	 | 	1www.ecolevol.org

Received:	29	March	2017  |  Revised:	11	June	2017  |  Accepted:	25	June	2017
DOI: 10.1002/ece3.3242

O R I G I N A L  R E S E A R C H

Using digital soil maps to infer edaphic affinities of plant 
species in Amazonia: Problems and prospects

Gabriel Massaine Moulatlet1  | Gabriela Zuquim1,2 |  
Fernando Oliveira Gouvêa Figueiredo3 | Samuli Lehtonen1,4 | Thaise Emilio3,5 |  
Kalle Ruokolainen1,6 | Hanna Tuomisto1

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2017	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1Department	of	Biology,	University	of	Turku,	
Turku,	Finland.
2Programa	de	Pesquisas	em	Biodiversidade	
–	PPBio,	Instituto	Nacional	de	Pesquisas	da	
Amazônia	-	INPA,	Manaus,	AM,	Brazil
3Programa	de	Pós-Graduação	em	
Ecologia,	Instituto	Nacional	de	Pesquisas	da	
Amazônia	-	INPA,	Manaus,	AM,	Brazil
4Biodiversity	Unit,	University	of	Turku,	Turku,	
Finland
5Comparative	Plant	and	Fungal	Biology,	Royal	
Botanic	Gardens,	Richmond,	London,	UK
6Department	of	Geography	and	Geology,	 
University	of	Turku,	Turku,	Finland

Correspondence
Gabriel	Massaine	Moulatlet,	Department	of	
Biology,	University	of	Turku,	FI-20014	Turku,	
Finland.
Email:	gabriel.moulatlet@utu.fi

Funding information
University	of	Turku	Graduate	School;	Academy	
of	Finland;	Brazilian	National	Council	for	
Scientific	and	Technological	Development	
(CNPq);	European	Union	Horizon2020/Marie	
Sklodowska-Curie,	Grant/Award	Number:	
706011

Abstract
Amazonia	combines	semi-	continental	size	with	difficult	access,	so	both	current	ranges	
of	 species	and	 their	ability	 to	cope	with	environmental	 change	have	 to	be	 inferred	
from	sparse	 field	data.	Although	efficient	 techniques	 for	modeling	species	distribu-
tions	on	the	basis	of	a	small	number	of	species	occurrences	exist,	their	success	depends	
on	the	availability	of	relevant	environmental	data	layers.	Soil	data	are	important	in	this	
context,	because	soil	properties	have	been	found	to	determine	plant	occurrence	pat-
terns	in	Amazonian	lowlands	at	all	spatial	scales.	Here	we	evaluate	the	potential	for	
this	 purpose	 of	 three	 digital	 soil	maps	 that	 are	 freely	 available	 online:	 SOTERLAC,	
HWSD,	and	SoilGrids.	We	first	tested	how	well	they	reflect	local	soil	cation	concentra-
tion	as	documented	with	1,500	widely	distributed	soil	samples.	We	found	that	meas-
ured	soil	 cation	concentration	differed	by	up	 to	 two	orders	of	magnitude	between	
sites	mapped	into	the	same	soil	class.	The	best	map-	based	predictor	of	local	soil	cation	
concentration	 was	 obtained	 with	 a	 regression	 model	 combining	 soil	 classes	 from	
HWSD	with	 cation	exchange	capacity	 (CEC)	 from	SoilGrids.	Next,	we	evaluated	 to	
what	degree	the	known	edaphic	affinities	of	 thirteen	plant	species	 (as	documented	
with	field	data	from	1,200	of	the	soil	sample	sites)	can	be	inferred	from	the	soil	maps.	
The	species	segregated	clearly	along	the	soil	cation	concentration	gradient	in	the	field,	
but	only	partially	along	the	model-	estimated	cation	concentration	gradient,	and	hardly	
at	all	along	the	mapped	CEC	gradient.	The	main	problems	reducing	the	predictive	abil-
ity	of	the	soil	maps	were	insufficient	spatial	resolution	and/or	georeferencing	errors	
combined	with	thematic	inaccuracy	and	absence	of	the	most	relevant	edaphic	varia-
bles.	Addressing	these	problems	would	provide	better	models	of	the	edaphic	environ-
ment	for	ecological	studies	in	Amazonia.
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1  | INTRODUCTION

Information	on	habitat	preferences	of	species	is	important	to	under-
stand	biogeography	and	macroecology,	and	to	make	justified	conser-
vation	decisions	and	 land	use	planning	 (Margules	&	Pressey,	2000).	
Amazonia	 is	 the	world’s	 largest	 tropical	 rainforest	and	an	 important	
repository	 of	 species	 diversity,	 but	 it	 is	 still	 poorly	 explored	 by	 re-
searchers	 (Feeley,	2015;	 ter	Steege	et	al.,	2016;	Zappi	et	al.,	2015).	
Recently,	climate	change	has	raised	concerns	about	species	tolerances	
to	the	changing	environment	and	possible	shifts	 in	species	distribu-
tions	(Feeley	&	Silman,	2016).	Mapping	suitable	habitats	for	species	
with	different	habitat	requirements	would	help	to	delimit	a	network	
of	 strategically	placed	conservation	units	 that	collectively	 represent	
the	heterogeneity	within	the	biome.	However,	a	major	practical	prob-
lem	is	that	field	observations	for	biotic	and	abiotic	data	available	for	
species	 distribution	 modeling	 are	 scanty	 and	 geographically	 biased	
(McMichael,	Matthews-	Bird,	Farfan-	Rios,	&	Feeley,	2017).

Recent	advances	in	Geographic	Information	Systems	(GIS),	statisti-
cal	techniques,	and	in	the	availability	of	biodiversity	and	environmen-
tal	databases	have	 inspired	a	 rapid	development	 in	 the	modeling	of	
species	distributions	(Barbosa	&	Schneck,	2015).	Species	distribution	
models	 (SDMs)	 in	data-	rich	continents	and	ecosystems	can	take	ad-
vantage	of	a	broad	range	of	environmental	variables	and	large	num-
bers	of	species	records	(Mod,	Scherrer,	Luoto,	&	Guisan,	2016).	At	the	
same	 time,	 semi-	continental	 areas	 such	as	Amazonia	 suffer	 simulta-
neously	 from	poor	species	data	coverage,	which	would	make	SDMs	
especially	important,	and	from	limited	availability	and	poor	accuracy	of	
environmental	data	layers,	which	renders	the	results	of	such	analyses	
less	reliable.

Climatic	layers	have	been	the	most	widely	used	variables	in	broad-	
scale	SDMs	both	because	climatic	factors	are	an	 important	environ-
mental	 determinant	 of	 species	 ranges	 (Feeley,	 2012)	 and	 because	
climatic	 data	 are	 readily	 available	 in	 digital	 format	 (e.g.,	WorldClim,	
Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2005).	Variation	 in	 rainfall	
seasonality	indeed	seems	to	affect	species	distributions	in	Amazonia	
(Esquivel-	Muelbert	et	al.,	2016;	ter	Steege	et	al.,	2006;	Toledo	et	al.,	
2011).	However,	climatic	variation	is	unlikely	to	be	the	only	(or	even	
the	main)	 cause	 of	 compositional	variation,	 especially	 in	 the	 central	
parts	of	Amazonia,	where	climate	 is	most	humid	and	 least	seasonal.	
Several	studies	have	indeed	found	soil	factors	to	be	of	greater	impor-
tance	than	climatic	factors	in	shaping	plant	communities	in	Amazonia	
(ter	Steege	et	al.,	2006;	Tuomisto	&	Poulsen,	1996;	Tuomisto,	Zuquim,	
&	Cárdenas,	2014;	Zuquim	et	al.,	2012).	In	particular,	the	concentration	
of	base	cations	in	the	soil	(Ca,	Mg,	K,	and	Na)	has	been	strongly	linked	
to	floristic	variation	across	the	lowlands	(Higgins	et	al.,	2011;	Phillips	
et	al.,	 2003;	 Pitman	 et	al.,	 2008;	 Tuomisto,	 Ruokolainen,	 Aguilar,	 &	
Sarmiento,	2003;	Tuomisto	et	al.,	 2016).	 It	 has	 also	been	 suggested	
that	niche	partitioning	along	the	soil	cation	concentration	gradient	is	
a	mechanism	 that	 promotes	 speciation	 and	 regional	 coexistence	 of	
closely	related	species	(Fine,	Daly,	&	Cameron,	2005;	Tuomisto,	2006).

In	spite	of	their	physiological	importance	and	proven	relationships	
with	 plant	 distributions,	 edaphic	 variables	 have	 rarely	 been	 used	 in	
SDMs.	This	may	be	either	due	to	the	low	resolution	and	accuracy	of	

the	available	soil	maps	or	 the	generally	held	 idea	 that	soils	are	only	
relevant	at	the	local	scale	(Coudun,	Gégout,	Piedallu,	&	Rameau,	2006;	
Grunwald,	 Thompson,	 &	 Boettinger,	 2011).	 However,	 edaphic	 vari-
ables	have	recently	been	shown	to	improve	the	explanatory	power	of	
SDMs	across	European	landscapes	(Bertrand,	Perez,	&	Gégout,	2012;	
Dubuis	et	al.,	 2013).	 In	Amazonia,	 the	need	of	digital	 soil	maps	and	
other	edaphic	GIS	 layers	has	 intensified	due	 to	 rapid	environmental	
changes	and	the	concern	about	the	current	status	of	soil	resources	and	
the	biodiversity	associated	with	them	(Grunwald	et	al.,	2011;	Laurance	
et	al.,	 2002).	 Increasing	 understanding	 of	 the	 tight	 relationship	 be-
tween	plant	species	occurrences	and	soil	properties	also	motivates	the	
use	of	edaphic	GIS	layers	for	predicting	the	distributions	of	plant	spe-
cies.	Indeed,	a	recent	study	made	inferences	about	the	relative	impor-
tance	of	past	human	influences	and	current	environmental	effects	on	
the	distribution	patterns	of	Amazonian	 trees	using	Cation	Exchange	
Capacity	 (CEC)	 values	 obtained	 from	 a	 digital	 soil	map	 (Levis	 et	al.,	
2017).	The	main	challenge	is	that	soil	properties	can	vary	considerably	
over	small	distances	and	depths	(Lips	&	Duivenvoorden,	1996;	Luizão	
et	al.,	2004;	Quesada	et	al.,	2011),	and	the	procedures	to	interpolate	
between	scanty	primary	soil	data	localities	might	produce	maps	whose	
accuracy	is	low	at	the	scales	that	are	relevant	for	the	study	at	hand.

Amazon-	wide	soil	maps	are	currently	available	digitally.	Three	of	
them	 have	 been	 used	 in	 species	 diversity	 assessments.	 The	 global	
Soil	 and	 Terrain	 Database	 (SOTER)	 is	 a	 well-	known	 polygon-	based	
map.	The	version	 for	 Latin	America	 and	 the	Caribbean	 (SOTERLAC,	
(Dijkshoorn,	Huting,	&	Tempel,	2005)	is	a	compilation	of	soil	informa-
tion	that	has	been	put	together	over	several	decades	and	it	provides	
a	soil	map	with	a	minimum	map	scale	of	1:1	million.	The	Harmonized	
World	 Soil	 Database	 (HWSD,	 Nachtergaele,	 Velthuizen,	 Verelst,	 &	
Wiberg,	2012)	provides	a	raster	map	with	1-	km	spatial	resolution.	It	is	
based	on	the	same	data	as	SOTER	but	includes	also	information	from	
national	soil	databases.	Rather	than	classifying	each	pixel	to	a	single	
soil	type,	HWSD	provides	a	coverage	probability	for	each	soil	class	in	
each	pixel.	Another	raster	map	is	SoilGrids	(Hengl	et	al.,	2014,	2017),	
which	has	a	250-	m	spatial	resolution	and	provides	chemical	and	phys-
ical	soil	variables	in	addition	to	occurrence	probabilities	for	soil	classes.	
The	SoilGrids	 information	 is	derived	from	statistical	modeling	of	soil	
properties,	and	the	interpolation	between	actual	soil	profiles	was	done	
using	machine	learning.

Recently,	digital	soil	 layers	have	started	to	be	used	for	modeling	
different	 aspects	 of	 biodiversity	 in	 the	 Neotropics	 (Albuquerque	 &	
Beier,	2015;	Kissling	et	al.,	2012;	Levis	et	al.,	2017;	McMichael,	Palace,	
&	Golightly,	 2014;	McPherson,	 2014;	 Poorter	 et	al.,	 2015;	Thomas,	
Alcázar	Caicedo,	Loo,	&	Kindt,	2014).	In	these	studies,	either	the	num-
ber	of	soil	classes	was	used	as	an	indicator	of	habitat	heterogeneity	or	
soil	CEC	was	extracted	from	the	maps	and	used	as	an	explanatory	vari-
able	in	data	analyses.	However,	validation	of	digital	soil	maps	depends	
on	the	availability	of	local	soil	 information,	so	the	thematic	accuracy	
of	 the	 information	 that	 the	maps	 provide	 for	 poorly	 sampled	 areas	
such	as	Amazonia	may	be	low	when	compared	to	other	parts	of	the	
globe	(Grunwald	et	al.,	2011;	Hengl	et	al.,	2014,	2017;	Sollins,	1998).	
This	raises	the	question:	How	well	will	the	predictions	of	species	oc-
currences	based	on	soil	maps	reflect	the	actual	associations	between	
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species	and	soil	properties?	The	inherent	accuracy	issues	of	soil	maps	
have	been	discussed	elsewhere	 (Brevik	et	al.,	2016;	Grunwald	et	al.,	
2011;	 Hartemink,	 Krasilnikov,	 &	 Bockheim,	 2013;	 Palm,	 Sanchez,	
Ahamed,	&	Awiti,	2007),	so	here	we	focus	on	those	aspects	that	are	
most	 relevant	when	using	 digital	 soil	maps	 to	 infer	 species	 edaphic	
niches.

Evaluating	 to	what	 degree	 species	 niches	may	be	 reconstructed	
incorrectly	due	to	problems	in	environmental	data	layers	requires	spe-
cies	 data	 that	 combine	 standardized	 taxonomy	with	 field-	measured	
environmental	data,	and	such	data	are	sparse	(ter	Steege	et	al.,	2016).	
Here	we	 use	 a	 dataset	 on	 fern	 species	 occurrences	 and	 soil	 cation	
concentration	 that	 has	 both	 broad	 geographic	 coverage	 and	 high	
taxonomical	 consistency.	We	 use	 these	 data	 to	 determine	 edaphic	
preferences	of	thirteen	plant	species	using	both	field	data	and	infor-
mation	extracted	 from	the	 three	digital	 soil	maps.	We	then	 test	 the	
correspondence	between	the	results	obtained	with	the	different	data	
sources.	We	specifically	ask	(1)	 if	soil	classes	mapped	in	SOTERLAC,	
HWSD,	 and	SoilGrids	 can	be	used	 as	 surrogates	of	 local	 soil	 cation	
concentration	within	the	Amazon	rain	forest	biome;	(2)	how	well	the	
information	extracted	from	digital	soil	maps	reflects	species	edaphic	
affinities	as	inferred	from	field	data;	and	(3)	what	are	the	current	ca-
veats	when	using	digital	soil	maps	to	determine	plant	species	niches	
across	Amazonia.

2  | METHODS

2.1 | Digital soil data

We	used	data	from	three	digital	soil	maps	in	our	analyses:	SOTERLAC,	
HWDS,	and	SoilGrids.	The	SOTERLAC	v2.0	soil	map	was	downloaded	
from	 the	 FAO-	ISRIC	 webpage	 (http://geonode.isric.org/layers/
geonode:soter_lac_map_unit,	 downloaded	 on	December	 2016).	 The	
minimum	map	scale	is	1:1	million	for	Brazil	and	Peru	and	1:5	million	for	
the	rest	of	Latin	America.	SOTERLAC	uses	soil	classes,	topology,	and	
terrain	characteristics	to	delineate	polygons,	having	the	Digital	Chart	
of	the	World	as	a	cartographic	base.	Each	polygon	has	a	soil	class	at-
tribute	(e.g.,	Haplic	Acrisols)	as	defined	by	the	World	Reference	Base	
for	soil	resources	(FAO	2006).

The	Harmonized	World	Soil	Database	v1.1	(HWSD)	is	composed	
of	 a	 set	 of	 layers	 that	 we	 downloaded	 from	Worldgrids	 portal	 of	
the	 ISRIC-	World	 Soil	 Information	 (http://www.worldgrids.org/doku.
php?id=wiki:layers,	downloaded	on	December	2016).	Each	of	the	30	
layers	corresponds	to	one	of	the	WRB-	FAO	dominant	soil	classes,	with	
the	pixel	values	expressing	 its	probability	of	occurrence	at	a	 resolu-
tion	of	30	arc-	seconds	(ca.	1	km	at	the	Equator).	HWSD	scale	 is	1:5	
million,	and	 it	uses	harmonized	soil	classes	and	soil	properties	com-
bined	from	national	and	regional	databases.	The	grid	cells	provide	the	
same	attributes	as	the	original	soil	maps	used	for	the	harmonization	
(Nachtergaele	et	al.,	2012).

SoilGrids	has	two	versions,	one	at	1-	km	resolution	and	the	other	at	
250-	m	resolution.	We	used	the	250-	m	data,	which	is	hereafter	simply	
referred	to	as	SoilGrids	(Hengl	et	al.,	2014,	2017).	SoilGrids	is	a	pixel-	
based	map	composed	of	a	set	of	layers	in	raster	format	that	contain	

either	information	related	to	the	soil	classification	or	to	specific	phys-
ical	and	chemical	properties.	The	 layers	with	data	on	the	WRB-	FAO	
soil	classes	 (layers	coded	as	TAXNWRB)	were	downloaded	from	the	
SoilGrids	portal	(http://soilgrids.org,	downloaded	on	December	2016).	
As	with	HWSD,	each	soil	class	is	stored	as	a	separate	layer	and	each	
pixel	has	a	value	corresponding	to	the	probability	of	occurrence	of	that	
soil	class.	SoilGrids	was	produced	by	machine	learning	algorithms	and	
it	used	158	covariates	as	model	input.

The	soil	class	attribute	of	the	SOTERLAC	polygons	is	based	on	a	
more	detailed	soil	classification	scheme	than	the	HWSD	dominant	soil	
class	data	and	SoilGrids	soil	classes.	To	allow	comparison	among	the	
datasets,	we	added	to	each	SOTERLAC	polygon	a	new	soil	class	attri-
bute	based	on	the	WRB-	FAO	dominant	soil	classes.	This	was	obtained	
by	applying	the	aggregation	of	soil	classes	proposed	by	Quesada	et	al.	
(Quesada	et	al.,	2011).	The	soil	classes	and	acronyms	that	are	relevant	
to	this	study	are	listed	in	the	Appendix	1,	Table	A1.

None	of	the	three	soil	maps	contains	information	on	the	concen-
tration	of	 exchangeable	base	 cations	 (Ca,	Mg,	 and	K)	 for	Amazonia,	
but	 SoilGrids	 provides	 a	 layer	with	 data	 on	 cation	 exchange	 capac-
ity	 (CEC,	 in	cmol(+)/kg).	The	concentration	of	exchangeable	bases	 is	
a	quantitative	measure	of	the	availability	of	these	nutrient	cations	in	
the	soil.	In	contrast,	CEC	measures	the	overall	potential	of	the	soil	to	
exchange	cations,	 including	 the	acid	aluminum,	which	 is	not	a	plant	
nutrient.	 Out	 of	 the	 CEC	 layers	 that	 are	 available	 in	 SoilGrids,	 we	
downloaded	CEC	values	as	estimated	for	 the	 top	5	cm	of	soil	 (layer	
CECSOL_M_sl2_250m_l1),	as	also	our	field	data	were	based	on	sur-
face	soil	samples.

2.2 | Field data

We	 carried	 out	 fieldwork	 in	 non-inundated	 (terra	 firme)	 forests	 in	
lowland	(<400	m	elevation)	Amazonia	in	the	context	of	two	originally	
independent	 research	 programs.	 Most	 of	 the	 western	 Amazonian	
data	were	collected	by	the	Amazon	Research	Team	of	the	University	
of	 Turku	 (hereafter	 referred	 to	 as	 UTU),	 and	 most	 of	 the	 central	
Amazonian	 data	 by	 the	 Brazilian	 Program	 of	 Biodiversity	 Research	
(hereafter	referred	to	as	PPBio).	Within	each	program,	soil	sampling	
and	quantitative	fern	inventories	were	done	using	plots	of	a	fixed	sur-
face	area,	but	the	length,	shape,	and	topographical	orientation	of	the	
plots	differed	between	programs.	All	plots	were	georeferenced	using	
coordinates	taken	with	a	handheld	GPS	in	the	field.

The	 PPBio	 inventories	 included	 326	 permanent	 plots	 of	
250	m	×	2	m.	 These	 were	 established	 along	 the	 terrain	 isoclines	 in	
order	 to	minimize	 local	 soil	 heterogeneity	 (Magnusson	 et	al.,	 2005).	
In	each	plot,	six	surface	soil	samples	(the	top	5	cm	of	the	mineral	soil)	
were	taken	at	every	50	m	and	bulked	to	obtain	a	single	composite	sam-
ple.	The	soil	samples	were	analyzed	for	exchangeable	Ca,	K,	Mg	in	the	
Plant	and	Soil	Thematic	Laboratory	of	Brazilian	National	Institute	for	
Amazonian	Research	(LTSP-	INPA)	using	the	Mehlich	I	protocol	(KCl	1N	
method;	Donagena,	Campos,	Calderano,	Teixera,	&	Viana,	1997).	For	
simplicity,	the	concentration	of	Ca,	Mg,	and	K	as	expressed	in	cmol(+)/kg	 
will	henceforth	be	referred	to	as	soil	cation	concentration.	PPBio	data	
are	available	at	https://ppbio.inpa.gov.br/repositorio/dados.

http://geonode.isric.org/layers/geonode:soter_lac_map_unit
http://geonode.isric.org/layers/geonode:soter_lac_map_unit
http://www.worldgrids.org/doku.php?id=wiki:layers
http://www.worldgrids.org/doku.php?id=wiki:layers
http://soilgrids.org
https://ppbio.inpa.gov.br/repositorio/dados
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The	UTU	inventories	included	311	temporary	line	transects	that	
were	5	m	wide	and	either	500	m	or	1,300	m	long.	The	transects	were	
generally	perpendicular	to	terrain	isoclines	in	order	to	maximize	local	
soil	 heterogeneity	 (Tuomisto	 et	al.,	 2003).	 Composite	 surface	 soil	
samples	(top	5	cm	of	the	mineral	soil)	were	taken	at	about	200-	m	in-
tervals	such	that	they	represented	the	topographical	extremes	within	
the	transect.	Each	soil	sample	consisted	of	five	subsamples	collected	
within	 an	 area	 of	 about	 5	m	by	5	m	 and	bulked.	 For	 the	 purposes	
of	the	present	paper,	we	extracted	150-	m-	long	segments	from	the	
UTU	transects.	Each	of	 these	879	plots	contains	exactly	one	com-
posite	soil	sample,	and	if	adjacent	plots	would	have	overlapped,	one	
of	them	was	excluded.	This	improves	the	accuracy	of	the	soil	data	in	
relation	to	the	plant	occurrence	data.	The	soil	samples	were	analyzed	
for	 soil	 cation	concentration	at	MTT	Agrifood	Research	 (Jokioinen,	
Finland)	using	extraction	 in	1	M	ammonium	acetate	 (van	Reeuwijk,	
1993).	Although	concentration	of	Na	was	analyzed	for	the	UTU	sam-
ples,	it	 is	not	used	here,	because	it	was	not	available	for	the	PPBio	
samples.

In	 addition,	 we	 used	 published	 data	 on	 soil	 cation	 concentra-
tion	 associated	 with	 the	 SOTERLAC	 database	 v2.0	 (Batjes,	 2005;	
Dijkshoorn	et	al.,	2005;	hereafter	referred	to	as	SOTERLAC)	from	300	
soil	profiles	across	Amazonia.	Some	of	 the	available	data	concerned	
deeper	 soil	 horizons,	 but	 we	 only	 used	 soil	 samples	 taken	 within	 
the	topmost	30	cm.	The	laboratories	and	procedures	used	to	analyze	
the	 SOTERLAC	 soil	 samples	 are	 listed	 in	 the	 SOTERLAC	metadata.	
The	spatial	distributions	of	 the	data	points	obtained	 from	the	 three	
soil	datasets	(UTU,	PPBio,	and	SOTERLAC)	are	shown	in	Figure	1.	In	

general,	nutrient	stocks	in	Amazonian	soils	are	higher	in	the	top	5	cm	
than	in	deeper	soil	horizons	(Johnson,	Vieira,	Zarin,	Frizano,	&	Johnson,	
2001;	Quesada	et	al.,	2011),	so	it	is	possible	that	the	SOTERLAC	soil	
samples	 give	 slightly	 smaller	 cation	 concentrations	 for	 similar	 soils	
than	the	UTU	and	PPBio	samples,	but	we	do	not	expect	this	to	signifi-
cantly	bias	the	analyses.

In	addition	to	soil	data,	both	UTU	and	PPBio	plots	provided	data	
on	plant	species	occurrences.	Here	we	focus	on	thirteen	fern	taxa	
that	 fulfill	 the	 following	criteria:	1)	They	were	well	 represented	 in	
both	datasets;	2)	earlier	studies	have	found	them	to	be	 indicators	
of	specific	parts	of	the	soil	cation	concentration	gradient	(Tuomisto	
&	Poulsen,	1996;	Tuomisto,	Ruokolainen	et	al.,	2003;	Zuquim	et	al.,	
2014);	3)	they	collectively	span	that	gradient;	and	4)	they	are	easy	
to	identify,	which	makes	it	possible	to	combine	the	PPBio	and	UTU	
data	 without	 having	 cross-	checked	 voucher	 specimens.	 The	 se-
lected	 species	were	as	 follows:	Adiantum pulverulentum,	Adiantum 
tomentosum,	 Cyathea pungens,	 Cyclopeltis semicordata,	 Lindsaea 
guianensis,	 Pteris pungens,	 Saccoloma inaequale,	 Schizaea elegans,	
Thelypteris macrophylla,	Trichomanes elegans,	 and	Trichomanes mar-
tiusii.	In	addition,	we	included	Metaxya	and	Triplophyllum	at	the	ge-
neric	 level:	 Each	 has	 only	 a	 few	 closely	 related	 species	 that	 have	
similar	distributions	along	the	soil	cation	concentration	gradient	and	
are	morphologically	 so	 similar	 that	 they	can	easily	be	confused	 in	
the	field.	In	each	plot,	all	terrestrial	fern	individuals	were	recorded	
that	had	at	least	one	leaf	longer	than	a	predefined	minimum	(5	cm	
for	PPBio	[but	see	(Zuquim	et	al.,	2012)	for	exceptions],	10	cm	for	
UTU).

F IGURE  1 Distribution	of	the	1505	
surface	soil	samples	used	in	this	study	(879	
samples	from	UTU,	326	from	PPBio,	and	
300	from	the	SOTERLAC	database	(Batjes,	
2005).	Limits	of	Amazonia	are	indicated	by	
the	orange	line	(Eva	&	Huber,	2005)
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2.3 | Correspondence between soil classes and local 
soil data

Because	 soil	 cation	 concentration	 has	 consistently	 emerged	 as	 a	
good	 predictor	 of	 plant	 species	 occurrence	 patterns,	 we	 first	 as-
sessed	 if	 the	 mapped	 soil	 class	 information	 that	 is	 available	 in	
SOTERLAC	 corresponds	with	 the	 soil	 cation	 concentration	 values	
measured	in	the	soil	samples	of	UTU,	PPBio,	and	SOTERLAC.	Each	
soil	 sample	was	assigned	 to	a	 soil	 class	on	 the	basis	of	 its	 coordi-
nates.	This	allowed	both	assessing	the	variability	within	the	mapped	
soil	classes	and	testing	for	differences	in	mean	soil	cation	concentra-
tion	between	them.	The	latter	was	done	using	ANOVA	followed	by	
Tukey’s	test.

We	used	multiple	 linear	 regression	models	 to	evaluate	how	well	
local	 soil	 cation	 concentration	 can	 be	 predicted	 using	 the	 soil	 class	
probabilities	of	HWSD	and	SoilGrids,	and	the	CEC	values	of	SoilGrids.	
We	 built	 separate	models	 for	HWSD	 and	 SoilGrids,	with	 and	with-
out	CEC.	Soil	cation	concentrations	obtained	from	UTU,	PPBio,	and	
SOTERLAC	field	samples	were	the	response	variable,	and	initial	model	
configuration	 had	 as	 explanatory	 variables	 all	 the	 downloaded	 soil	
classes.	The	 significant	 variables	 of	 each	model	were	 selected	 by	 a	
stepwise	forward–backward	procedure.	We	identified	the	best	model	
with	the	lowest	Akaike	information	criterion	(AIC).	We	used	the	pre-
dicted	 soil	 cation	 concentrations	 from	 these	models	 to	 reconstruct	
species–soil	associations.	These	analyses	were	carried	out	separately	
for	the	UTU,	PPBio,	and	SOTERLAC	soil	data,	as	well	as	all	three	soil	
datasets	combined.

2.4 | Correspondence of the geographic limits of soil 
classes with landscape features

As	 the	 SOTERLAC	 map	 is	 based	 on	 polygons,	 the	 soil	 classes	 are	
clearly	defined	by	borders.	Although	 the	HWSD	 is	a	pixel	map,	 soil	
class	probabilities	in	them	reflect	broader	patterns	similar	to	those	in	
SOTERLAC.	This	makes	it	possible	to	check	if	such	landscape	features	
that	 are	 typically	 associated	with	 specific	 soil	 types	 actually	match	
the	mapped	distribution	of	those	soil	types.	We	focused	on	the	con-
trast	between	non-inundated	 (terra	 firme)	areas	and	the	 floodplains	
of	major	rivers,	because	the	 limit	between	the	two	 is	readily	 identi-
fiable	 in	SRTM	(Shuttle	Radar	Topography	Mission)	data,	and	flood-
plains	 typically	 have	 such	 soil	 types	 that	 rarely	occur	 in	 terra	 firme	
(e.g.,	Gleysols	and	Fluvisols).	We	used	ArcGIS	v10.1	to	overlay	the	soil	
maps	and	SRTM.	Then,	we	visually	scanned	through	the	Amazon	basin	
to	assess	how	well	the	floodplain-	associated	soil	classes	matched	the	
extent	of	 the	 floodplains	 as	 interpreted	 from	SRTM.	All	 data	 layers	
used	the	same	datum	(WGS84)	and	projection	(Lat/Long).

2.5 | Species affinities to soil properties

To	estimate	where	the	abundance	of	each	taxon	peaks	along	the	soil	
cation	concentration	gradient,	we	calculated	the	soil	cation	concentra-
tion	optimum	for	every	taxon	(sensu	ter	Braak	&	van	Dam,	1989).	This	
equals	the	weighted	average	of	the	soil	cation	concentration	values	

in	those	plots	where	the	taxon	occurred,	with	the	taxon’s	abundance	
used	as	the	weight	(eq.	4	in	(ter	Braak	&	van	Dam,	1989).	In	addition,	
we	calculated	a	 tolerance	 for	each	 taxon	as	 the	 root	mean	squared	
error	(RMSE)	around	the	optimum.	This	was	done	separately	for	the	
soil	 cation	 concentration	values	 that	had	been	measured	 from	 field	
samples	and	those	values	that	were	predicted	with	multiple	regression	
models	on	the	basis	of	HWSD	and	SoilGrids.	For	comparison,	we	also	
calculated	optima	and	tolerances	for	CEC	as	extracted	from	SoilGrids.	
The	 rank	 correlation	between	 the	 field-	based	and	model-	based	op-
tima	was	quantified	using	Kendall’s	tau.

All	 data	 analyses	 were	 performed	 in	 R	 using	 code	 written	 by	
GMM	and	 the	packages	vegan	 (Oksanen	et	al.,	 2015),	 rioja	 (Juggins,	
2015),	ggplot2	(Wickham,	Chang,	&	Wickham,	2013),	dplyr	(Wickham	
&	 Francois,	 2016),	maptools	 (Bivand	&	 Lewin-	Koh,	 2016),	 and	 rgdal 
(Bivand,	Keitt,	&	Rowlingson,	2016).

3  | RESULTS

3.1 | Soil cation concentration and mapped soil 
classes

The	SOTERLAC	soil	dataset	covered	Amazonia	more	evenly	than	the	
other	datasets	did	 (Figure	1),	 and	 the	majority	of	 the	 soil	 classes	 in	
the	SOTERLAC	soil	map	were	represented	by	at	least	one	SOTERLAC	
soil	profile.	 In	contrast,	 less	 than	half	of	 the	SOTERLAC	soil	classes	
were	represented	in	the	UTU	and	PPBio	soil	datasets	(Figure	1).	For	
example,	soils	that	are	typically	found	along	rivers,	such	as	Fluvisols	
and	Gleysols,	were	 absent	 in	 the	PPBio	dataset	 because	 the	PPBio	
sampling	was	concentrated	in	interfluvial	areas.

Almost	 all	 SOTERLAC	 soil	 classes	 had	 broad	 ranges	 of	 soil	 cat-
ion	 concentration,	 and	 soil	 samples	 assigned	 to	 the	 same	 soil	 class	
could	differ	in	cation	concentration	by	up	to	two	orders	of	magnitude	
(Figure	2,	Table	A1).	Nevertheless,	soil	classes	with	the	highest	soil	cat-
ion	concentration	values	were	significantly	different	from	those	with	
the	 lowest	values	 (Table	1).	The	correlation	between	 field-	measured	
soil	cation	concentration	and	CEC	from	SoilGrids	was	statistically	sig-
nificant	but	weak	(Pearson’s	r	=	.106,	p	<	.001).	The	explanatory	power	
(adjR2)	of	the	multiple	regression	models	using	the	HWSD	or	SoilGrids	
soil	classes	as	predictors	of	field-	measured	soil	cation	concentration	
ranged	0.25–0.32	 for	 the	UTU	data,	 0.38–0.57	 for	 the	PPBio	data,	
0.29–0.42	for	the	SOTERLAC	data,	and	0.20–0.23	for	the	combined	
data	(Table	2).	Models	based	on	HWSD	had	consistently	better	predic-
tive	power	than	those	based	on	SoilGrids,	but	including	or	excluding	
CEC	made	little	difference.

The	visual	comparison	of	the	SOTERLAC	and	HWSD	soil	maps	with	
SRTM	elevation	 data	 revealed	 severe	 georeferencing	 problems.	 Soil	
classes	typical	of	inundated	areas	(Gleysols,	Fluvisols)	were	displaced	
by	up	to	20	km	from	the	river	floodplains	they	were	obviously	meant	
to	follow,	and	were	instead	mapped	onto	areas	that	the	SRTM	shows	
to	be	non-inundated	(Figures	3	and	4a).	This	causes	soil	samples	from	
these	areas	to	get	associated	with	the	wrong	soil	class	in	the	numerical	
analyses,	which	can	significantly	increase	the	range	of	soil	cation	con-
centration	values	associated	with	the	affected	soil	classes.	Although	
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HWSD	has	a	higher	nominal	resolution	than	SOTERLAC	(1-	km	pixel	
vs.	large	polygons),	it	suffers	from	the	same	georeferencing	problems.	
In	this	respect,	SoilGrids	has	corrected	these	issues	(Figure	4b).

Another	potential	source	of	inaccuracy	is	that	an	area	may	have	more	
heterogeneous	soils	than	is	apparent	from	the	soil	maps.	We	assessed	
this	 in	 the	 non-inundated	 area	 around	 Iquitos,	 Peru,	which	we	 know	

F IGURE  2 The	distribution	of	soil	cation	concentrations	as	measured	in	soil	samples	of	three	different	datasets	(SOTERLAC,	UTU,	and	
PPBio)	within	soil	classes	as	represented	in	three	digital	soil	maps	of	Amazonia	(SOTERLAC,	SoilGrids,	and	HWSD).	In	(a)	and	(b),	the	colored	
lines	indicate	the	total	range	of	cation	concentration	values,	the	small	black	dots	the	values	measured	in	individual	soil	samples,	and	the	open	
circles	the	corresponding	means.	In	(c)	and	(d),	each	colored	dot	corresponds	to	a	soil	sample,	and	dot	size	is	proportional	to	the	probability	that	
the	corresponding	pixel	in	the	digital	soil	map	contains	the	indicated	soil	class.	Only	soil	classes	that	were	represented	in	UTU	and/or	PPBio	data	
are	shown.	Soil	classes	are	ordered	by	their	mean	cation	concentration	value	as	calculated	using	all	soil	sample	data.	For	explanations	of	the	soil	
class	acronyms	in	(a)	and	(c),	see	Appendix	1,	Table	A1
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from	field	experience	to	contain	a	mosaic	of	soil	types	ranging	from	ex-
tremely	poor	white	sands	 (Arenosols)	 to	cation-	rich	clay	soils	 (Alisols).	
However,	the	spatial	resolution	of	the	SOTERLAC	map	is	not	sufficient	
to	separate	these	edaphically	contrasting	patches	into	different	polygons	
(Figure	4a).	Therefore,	the	SOTERLAC	soil	classes	that	are	assigned	to	
the	large	polygons	close	to	Iquitos	necessarily	receive	broad	cation	con-
centration	ranges.	For	example,	 the	measured	cation	concentration	 in	
soil	samples	taken	within	a	single	polygon	ranged	0.12	–	37.59	cmol/kg	 
for	Haplic	Acrisols	(ACh)	and	0.30	–	22.33	cmol/kg	for	Gleysols	(GLe).

3.2 | Optima and tolerances of taxa along 
soil gradients

When	based	on	the	soil	cation	concentration	gradient	derived	from	
actual	soil	samples,	the	tolerances	of	the	fern	taxa	were	narrow	and	
the	 taxon	optima	were	well	distributed	 in	both	 the	PPBio	and	UTU	
datasets.	In	addition,	the	rank	orders	of	the	taxon	optima	were	almost	
identical	(Figure	5a,	Table	3).

When	 taxon	 optima	 were	 calculated	 based	 on	 the	 soil	 cation	
concentration	 gradient	 predicted	 using	 the	HWSD	 and	 SoilGrids	 soil	
class	 probabilities	 (Table	3,	 Figure	5c,d),	 relatively	 similar	 results	were	 
obtained	than	with	the	actual	soil	sample	data.	The	rankings	of	taxon	op-
tima	based	on	these	two	approaches	were	highly	correlated	both	for	the	
UTU	and	the	PPBio	data	separately	and	for	the	combined	dataset	(UTU:	
Kendall’s	 tau	=	0.67–0.82,	p	<	.001;	PPBio:	Kendall’s	 tau	=	0.77–0.64,	
p	<	.001;	combined:	Kendall’s	tau	=	0.61–0.66,	p	<	.001;).	However,	the	
optima	based	on	predicted	soil	cation	concentration	values	were	 less	
spread	out	along	the	gradient	than	the	optima	based	on	measured	val-
ues.	Consequently,	the	predicted	tolerances	overlapped	more	broadly	
between	species	than	the	measured	tolerances	did.

Taxon	optima	along	the	CEC	gradient	derived	from	SoilGrids	lacked	
consistency	between	the	UTU	and	PPBio	datasets	(Figure	5b).	Moreover,	
the	tolerances	of	the	individual	taxa	covered	a	much	larger	proportion	
of	 the	mapped	CEC	gradient	than	of	either	the	field-	observed	or	the	
predicted	soil	cation	concentration	gradient.	With	few	exceptions,	the	

CEC	optimum	of	a	given	taxon	was	much	lower	when	calculated	using	
the	PPBio	dataset	than	when	using	the	UTU	dataset.	This	reflects	the	
fact	that	most	UTU	sites	were	in	western	Amazonia,	where	the	mapped	
CEC	values	are	generally	higher	than	in	central	Amazonia,	where	most	
PPBio	sites	were.	When	the	UTU	and	PPBio	data	were	combined,	the	
CEC	tolerances	of	all	species	covered	most	of	the	mapped	CEC	gradi-
ent	(Figure	6).	The	rankings	of	the	taxon	optima	based	on	map-	derived	
CEC	values	were	not	correlated	with	optima	based	on	field-	measured	
soil	cation	concentrations	for	either	the	UTU	or	the	PPBio	data	(UTU:	
Kendall’s	tau	=	0.23,	p	=	.306;	PPBio:	Kendall’s	tau	=	0.33,	p	=	.129).

4  | DISCUSSION

Even	though	soil	properties	are	known	to	be	important	determinants	of	
plant	distribution	patterns	at	the	local	and	regional	scales	in	Amazonia,	
few	attempts	have	been	made	to	use	soil	data	in	species	distribution	
modeling	 at	 the	 extent	 of	 the	 entire	Amazon	 basin.	 Climatic	 layers	
have	been	much	more	widely	used,	partly	because	climate	is	thought	
to	be	more	relevant	at	broad	scales,	but	no	doubt	also	because	eco-
logically	relevant	climatic	data	have	been	easily	available	in	digital	GIS	
formats	for	some	time	already	(Mod	et	al.,	2016).	Although	digital	soil	
data	covering	 the	entire	Amazon	basin	have	recently	become	avail-
able	(SOTERLAC,	HWSD,	and	SoilGrids),	our	results	indicate	that	their	
limitations	have	to	be	considered	when	they	are	used	to	infer	species	
edaphic	niches.

Our	results	confirmed	earlier	findings	that	significant	differences	
exist	among	the	thirteen	fern	taxa	in	their	optima	and	tolerances	along	
the	 soil	 cation	 concentration	 gradient	 (Tuomisto	 &	 Poulsen,	 1996;	
Zuquim	et	al.,	2014).	 Importantly,	these	results	were	very	consistent	
across	 the	 independent	 UTU	 and	 PPBio	 datasets,	 even	 though	 the	
two	had	applied	different	field	and	laboratory	protocols	and	had	been	
collected	over	 a	 long	 time	period.	This	 suggests	 that	 the	 affinity	 of	
a	species	to	a	specific	level	of	soil	cation	concentration	is	consistent	
(Tuomisto,	2006;	Zuquim	et	al.,	2012).

TABLE  1 Results	of	Tukey’s	tests	assessing	if	pairs	of	dominant	soil	classes	in	SOTERLAC	differ	in	mean	soil	cation	concentration	in	lowland	
Amazonia.	The	upper	triangle	shows	the	error	probabilities	for	the	UTU	dataset	and	the	lower	triangle	for	the	PPBio	dataset.	Significant	
comparisons	of	soil	classes	(p	adj	<	.001)	are	shown	in	bold.	Empty	cells	correspond	to	dominant	soil	classes	that	were	not	represented	in	one	
of	the	datasets

Acrisols Alisols Cambisols Ferralsols Fluvisols Gleysols Leptosols Lixisols Plinthosols Podzols

Acrisols NA 1.000 0.638 0.000 0.178 0.000 0.931 0.001 0.308

Alisols NA 0.938 0.000 0.546 0.047 0.941 0.008 0.313

Cambisols 0.000 NA 0.000 0.03 0.913 0.349 0.000 0.087

Ferralsols 0.000 0.000 NA 0.094 0.000 0.390 1.000 1.000

Fluvisols NA 0.000 1.000 0.366 0.801

Gleysols NA 0.004 0.000 0.010

Leptosols 0.036 0.000 0.978 NA

Lixisols NA 0.603 0.801

Plinthosols 0.000 0.000 0.000 0.478 NA 1.000

Podzols 0.000 0.000 0.005 0.966 0.342 NA
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We	found	that	the	soil	classes	had	low	to	 intermediate	correspon-
dence	with	field-	measured	soil	cation	concentrations.	Because	Amazonia	
harbors	soil	 classes	 that	vary	widely	 in	 their	pedogenesis	as	well	as	 in	
chemical	and	physical	properties	(Quesada	et	al.,	2010),	we	expected	that	
mapped	soil	class	information	could	be	used	to	infer	spatial	heterogeneity	
in	 such	 soil	properties	 that	would	be	 important	 in	 species	distribution	
modeling	(SDMs).	In	particular,	we	expected	that	cation-	poor	soil	classes	
would	clearly	differ	from	cation-	rich	soil	classes.	However,	this	was	not	
the	case,	which	reduces	the	usefulness	of	the	soil	maps	for	applications	
that	depend	on	identifying	where	edaphically	suitable	sites	for	plant	spe-
cies	of	 interest	might	be	found.	The	 low	correspondence	between	the	
true	predictor	variable	(field	data)	and	the	digital	environmental	layer	sug-
gests	that	the	predictions	of	SDMs	based	on	these	data	would	have	high	
uncertainties	(McInerny	&	Purves,	2011).	Our	results	are	related	to	three	
main	problems	in	the	digital	soil	maps:	(1)	insufficient	resolution	and	the-
matic	accuracy,	(2)	georeferencing	problems,	and	(3)	absence	of	relevant	
variables.	Each	of	these	will	be	discussed	in	turn.

4.1 | Insufficient resolution and thematic accuracy

The	 international	 soil	 science	 community	has	 invested	 considerable	
effort	in	producing	global	soil	maps,	and	these	are	no	doubt	useful	for	
many	purposes	(Hartemink	et	al.,	2013).	However,	 it	 is	a	recognized	
problem	that	the	accuracy	of	soil	maps	in	Amazonia	is	low	(Laurance	
et	al.,	2002)	due	to	the	limited	and	fragmented	field	knowledge	about	
the	spatial	distribution	of	different	kinds	of	soils	and	their	properties.	
This	can	be	problematic	for	species	distribution	modeling	and	other	
applications	that	depend	on	correctly	identifying	both	the	edaphic	af-
finities	of	species	and	the	spatial	distribution	of	the	suitable	edaphic	
conditions.

SOTERLAC	is	available	as	a	vector	map,	in	which	resolution	is	con-
strained	by	polygon	size.	In	most	of	Amazonia,	the	polygons	are	very	
large,	in	many	cases	more	than	100	km	across.	Polygons	that	are	larger	

than	the	patches	of	significantly	different	soils	necessarily	become	in-
ternally	heterogeneous.	The	larger	the	discrepancy	between	polygon	
size	in	the	map	and	the	patch	size	of	actual	soil	heterogeneity	in	the	
field,	the	bigger	the	problem	caused	by	low	spatial	resolution.	In	ex-
treme	cases,	significant	soil	variation	is	not	shown	in	the	soil	map	at	all.

Our	results	showed	that	differences	in	cation	concentration	of	up	
to	two	orders	of	magnitude	can	be	found	within	a	single	SOTERLAC	
polygon.	For	some	soil	classes,	a	single	outlier	soil	sample	extended	
the	 observed	 soil	 cation	 concentration	 range	 notably,	 but	 in	 most	
cases,	the	measured	cation	concentration	values	were	well	distributed	
over	the	range	(Figure	2).	Nevertheless,	in	spatial	analyses,	the	poly-
gons	have	to	be	treated	as	if	any	attribute	values	were	uniform	within	
them,	so	internal	heterogeneity	will	cause	noise	and	reduce	the	accu-
racy	of	SDMs.	The	resolution	discrepancies	can	cause	soil	samples	and	
plant	occurrences	to	become	associated	with	the	wrong	soil	class.	As	
a	result,	the	soil	maps	may	indicate	as	suitable	for	a	given	species	such	
soil	classes	on	which	the	species	in	reality	does	not	occur	but	appears	
to	do	so	on	the	basis	of	the	soil	map.

HWSD	and	SoilGrids	are	available	as	 raster	maps,	 in	which	spa-
tial	resolution	depends	on	pixel	size	(1	km	and	250	m,	respectively).	In	
these	maps,	the	spatial	resolution	can	be	considered	high,	but	the	ac-
tual	thematic	information	is	unlikely	to	be	accurate	at	this	resolution.	
Indeed,	the	SOTERLAC	polygon	limits	are	clearly	visible	in	the	HWSD,	
which	therefore	suffers	from	partly	the	same	problems.	SoilGrids,	on	
the	other	hand,	is	based	on	machine	learning	algorithms	and	its	the-
matic	 resolution	can,	 in	principle,	be	upgraded	according	 to	 the	co-
variates	used	 in	the	mapping.	However,	accuracy	 is	still	a	challenge,	
because	it	is	dependent	on	the	availability	of	local	soil	information	as	
an	input	for	the	mapping.

We	 found	 that	 the	 relationships	 between	 fern	 taxa	 and	 CEC	
values	were	 inconsistent	 between	 the	 UTU	 and	 PPBio	 datasets.	 In	
general,	 soil	 heterogeneity	 is	 higher	 in	 western	 Amazonia	 than	 in	
central	Amazonia	(Quesada	&	Lloyd,	2016;	Sombroek,	2000).	A	very	

TABLE  2 Summary	of	the	results	of	
multiple	regression	models	that	aim	to	
predict	soil	cation	concentration	using	the	
soil	class	data	from	either	SoilGrids	or	
HWSD.	Models	were	run	for	UTU,	PPBio,	
and	SOTERLAC	datasets	both	separately	
and	combined.	In	addition,	SoilGrids	as	
HWSD	are	composed	of	multiple	and	
independent	layers	that	were	used	as	
separate	variables	in	the	models.	The	
values	of	soil	cation	concentration	were	
log-	transformed.	The	full	names	of	the	soil	
layers	are	listed	in	Table	A2.	AIC	=	Akaike	
Information	Criterion

Dataset Soildata AIC adjR2 p- value

UTU HWSD 1720 0.31 <.001

SoilGrids 1795 0.25 <.001

HWSD	+	CEC 1720 0.32 <.001

SoilGrids	+	CEC 1778 0.27 <.001

PPBio HWSD 175 0.55 <.001

SoilGrids 284 0.38 <.001

HWSD	+	CEC 167 0.57 <.001

SoilGrids	+	CEC 276 0.39 <.001

SOTERLAC HWSD 521 0.29 <.001

SoilGrids 515 0.3 <.001

HWSD	+	CEC 457 0.42 <.001

SoilGrids	+	CEC 474 0.39 <.001

UTU	+	PPBio	+	SOTERLAC HWSD 2899 0.23 <.001

SoilGrids 2955 0.2 <.001

HWSD	+	CEC 2891 0.23 <.001

SoilGrids	+	CEC 2919 0.22 <.001

Rev
Cross-Out

Rev
Inserted Text
and



     |  9MOULATLET ET AL.

long	gradient	 in	soil	cation	concentration	can	be	found	within	a	few	
kilometers	 in	 western	 Amazonia	 (Higgins	 et	al.,	 2011;	 Tuomisto	 &	
Ruokolainen,	 1994),	 whereas	 central	 Amazonia	 seems	 to	 lack	 the	
high-	cation	soils	entirely.	These	regional	differences	notwithstanding,	
our	results	based	on	measured	soil	cation	concentration	were	consis-
tent	 between	 the	UTU	 and	 PPBio	 datasets.	 In	 contrast,	 our	 results	
based	on	map-	derived	CEC	were	 far	 from	consistent.	This	 indicates	
that	predictions	made	using	the	mapped	CEC	values	may	not	reflect	
local	conditions	adequately,	but	might	be	overly	sensitive	to	assumed	
continent-	wide	trends.	Consequently,	studies	that	use	CEC	as	the	soil	
variable	in	species	modeling	(e.g.,	Levis	et	al.,	2017;	McMichael	et	al.,	
2014)	may	have	underestimated	the	importance	of	soils	to	explain	flo-
ristic	patterns.

4.2 | Georeferencing problems

A	visual	comparison	of	the	SOTERLAC	map	with	SRTM	topographical	
data	revealed	that	there	are	relevant	georeferencing	errors	in	some	of	
the	limits	between	soil	classes.	In	particular,	along	many	rivers,	the	soil	
classes	typical	of	inundated	areas	did	not	coincide	with	the	actual	river	

floodplains,	and	often	the	displacement	was	in	the	order	of	20	km	or	
more.	The	original	SOTERLAC	maps	were	produced	at	a	small	scale	
of	 1:1	million	or	 even	1:5	million,	 and	 at	 that	 scale	 such	errors	 are	
marginal.	 The	 situation	 becomes	 very	 different	when	 the	maps	 are	
digitized,	because	then	they	can	be	zoomed	in	and	the	digital	polygons	
seem	to	have	exact	limits	at	all	scales.	However,	their	real	accuracy	is	
no	better	than	that	of	the	original	small-	scale	map,	which	will	cause	
problems	in	GIS	analyses	that	overlay	data	from	different	sources	on	
the	basis	 of	 exact	 coordinates.	 The	 same	georeferencing	errors	 are	
retained	in	HWSD	and	the	1-	km	resolution	version	of	SoilGrids,	which	
was	produced	using	HWSD	as	covariate	 (Hengl	et	al.,	2014).	 In	 the	
newer	 version	of	 SoilGrids	 at	250-	m	 resolution	 (which	was	used	 in	
our	analyses),	the	displacement	of	the	floodplains	has	been	corrected	
with	the	help	of	the	SRTM	digital	elevation	model	(Hengl	et	al.,	2017).

Global	soil	maps	can	be	very	useful	in	providing	information	about	
general	trends	across	continents,	but	their	 local	 inaccuracy	becomes	
an	issue	when	they	are	used	in	species-	soil	assessments.	A	georefer-
encing	error	of	 just	 a	 few	hundred	meters	between	contrasting	 soil	
classes	may	be	sufficient	to	create	an	artefactual	association	between	
a	taxon	and	a	soil	type,	which	is	likely	to	cause	the	soil	associations	of	

F IGURE  3 The	displacement	of	Gleysols	and	Fluvisols,	which	are	typical	of	inundated	areas,	in	relation	to	river	floodplains.	Orange	
shading	shows	the	distribution	of	the	soil	classes	as	mapped	in	SOTERLAC,	gray	background	is	the	SRTM	digital	elevation	model.	Dark	shades	
correspond	to	low	elevations	(river	floodplains	and	swamps),	light	shades	to	high	elevations	(noninundated	areas).	Details	are	shown	from	along	
six	tributaries	of	the	Amazon	river:	(a)	middle	Juruá;	(b)	lower	Purus;	(c)	middle	Madeira;	(d)	lower	Tapajós;	(e)	confluence	of	the	Japurá	(North),	
Solimões	(main	channel),	and	Juruá;	(f)	upper	Madeira	and	upper	Purus
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taxa	to	appear	less	specialized	than	they	actually	are.	This,	in	turn,	can	
have	a	major	impact	on	both	which	areas	are	modeled	to	contain	suit-
able	soils	for	a	taxon	of	interest,	and	how	large	those	suitable	areas	are	
predicted	to	be.	Errors	 in	such	predictions	can	have	serious	 impacts	
when	the	results	are	used	to	guide	conservation	planning	or	other	de-
cisions	that	have	implications	for	biodiversity.	Given	that	accessibility	
issues	have	caused	data	collecting	in	Amazonia	to	become	highly	con-
centrated	along	the	rivers	(McMichael	et	al.,	2017),	the	georeferencing	
problems	we	identified	can	be	expected	to	be	especially	severe.

The	usual	approach	in	species	distribution	modeling	is	to	take	the	
available	 environmental	 data	 layers	 and	 accept	 them	 at	 face	 value,	
because	 analysts	 rarely	 have	 the	possibility	 to	do	otherwise.	 Species	
modeling	 techniques	 allow	 using	 both	 vector	 maps	 and	 raster	 maps	
simultaneously.	Raster	maps	usually	provide	quantitative	 information,	
while	vector	maps	are	more	often	associated	with	qualitative	informa-
tion.	 Identifying	 errors	 requires	 detailed	 scrutiny	 of	 the	 data	 against	
another	data	source	or	field	knowledge,	and	even	if	problems	are	identi-
fied,	correcting	them	can	be	a	daunting	task	(the	more	so	the	bigger	the	
area	of	 interest)	 (Hengl	et	al.,	2017).	Georeferencing	errors	related	to	

the	limits	of	floodplains	and	their	associated	soil	classes	can,	in	principle,	
be	identified	and	corrected	using	a	high-	resolution	map	of	Amazonian	
wetlands	 (Hess	 et	al.,	 2015).	 However,	 limits	 between	 soil	 types	 in	
the	vast	non-inundated	areas	are	more	difficult	to	detect	and	correct.	
Species	distribution	models	therefore	need	to	allow	for	large	locational	
errors	 to	 diminish	 the	 effect	 of	 georeferencing	 problems	 associated	
with	the	maps,	which	in	turn	may	reduce	their	thematic	accuracy.

4.3 | Absence of relevant variables

We	 found	 the	 correlation	 between	measured	 soil	 cation	 concentra-
tion	and	mapped	CEC	to	be	very	 low.	Many	ecological	 studies	have	
shown	that	soil	cation	concentration	(specifically,	the	concentration	of	
the	base	cations	Ca,	Mg,	and	K)	is	among	the	most	important	variables	
to	explain	plant	species	occurrence	patterns	in	Amazonia	(Pansonato,	
Costa,	 de	 Castilho,	 Carvalho,	 &	 Zuquim,	 2013;	 Phillips	 et	al.,	 2003;	
Tuomisto,	 Ruokolainen,	 &	 Yli-	Halla,	 2003;	 Tuomisto	 et	al.,	 2016;	
Zuquim	et	al.,	2014).	However,	this	variable	is	not	provided	in	any	of	
the	currently	available	digital	soil	maps.	SoilGrids	provides	CEC	(cation	

F IGURE  4 Georeferencing	problems	in	digital	soil	maps	in	the	Iquitos	area,	northern	Peru:	(a)	Displacement	of	SOTERLAC	soil	class	
boundaries	in	relation	to	the	elevational	data	from	SRTM-	DEM.	Dark	shades	correspond	to	low	elevations	(river	floodplains	and	swamps),	light	
shades	to	high	elevations	(noninundated	areas).	(b)	Soil	cation	exchange	capacity	(CEC)	values	obtained	from	SoilGrids	(lighter	shades	correspond	
to	higher	values)	in	relation	to	the	SOTERLAC	soil	class	boundaries.	Orange	dots	correspond	to	soil	samples,	and	their	size	is	proportional	to	
measured	soil	cation	concentration	value	as	shown	in	the	inset	(in	cmol(+)/kg)
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exchange	capacity),	which	is	related	to	cations	but	has	problems	as	a	
surrogate	measure:	It	quantifies	the	potential	of	the	soil	to	bind	cations	
in	general	(including	aluminum),	not	the	concentration	of	base	cations	
that	are	actually	present	in	the	soil	and	available	to	plants.	For	example,	

the	Soilgrids	CEC	fails	to	reflect	a	1,000-	km-	long	limit	between	geo-
logical	formations	that	is	associated	with	contrasting	soils,	vegetation,	
and	plant	species	composition	at	the	border	between	western	and	cen-
tral	Amazonia	(Higgins	et	al.,	2011;	IBGE	2004;	Tuomisto	et	al.,	2016).

F IGURE  5 Optima	(circles)	and	tolerances	(horizontal	bars)	of	thirteen	fern	taxa	along	six	different	soil	gradients	as	calculated	separately	
for	UTU	(gray	lines)	and	PPBio	(black	lines).	Soil	gradient	based	on	(a)	soil	cation	concentration	(SCC)	measured	from	soil	samples	of	the	PPBio	
and	UTU	datasets;	(b)	cation	exchange	capacity	(CEC)	from	SoilGrids;	(cd)	soil	cation	concentration	as	estimated	from	HWSD	or	SoilGrids	soil	
class	data;	(e-	f)	soil	cation	concentration	as	estimated	from	HWSD	or	SoilGrids	soil	class	data	together	with	CEC.	For	the	variables	used	in	the	
regression	models,	see	Appendix	1,	Table	A2.	Taxa	are	sorted	according	to	the	mean	of	the	two	optimum	values	in	(a)

TABLE  3 Summary	of	Kendal’s	tau	rank	correlations	between	the	rank	orders	of	species	optima	along	a	soil	cation	concentration	gradient	as	
calculated	in	two	different	ways.	One	set	of	optima	was	based	on	soil	cation	concentrations	measured	from	soil	samples	(Figure	5a)	and	the	
other	on	soil	cation	concentrations	predicted	using	each	of	the	regression	models	shown	in	Table	2	in	turn.	The	lettering	in	the	column	names	
(B-	F)	corresponds	to	the	panels	in	Figures	5–6.	Analyses	were	carried	out	for	UTU	and	PPBio	data	both	separately	and	combined

B -  CEC C -  Soil Classes (HWSD)
D -  Soil Classes 
(SoilGrids)

E -  Soil Classes 
(HWSD) + CEC

F -  Soil Classes 
(SoilGrids) + CEC

UTU 0.23	(0.306) 0.67	(0.001) 0.82	(0) 0.72	(0) 0.79	(0)

PPBio 0.33	(0.129) 0.77	(0) 0.64	(0.002) 0.79	(0) 0.74	(0)

Both 0.08	(0.57) 0.61	(0) 0.66	(0) 0.62	(0) 0.67	(0)
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The	number	of	soil	classes	has	sometimes	been	used	as	an	 indi-
cator	 of	 soil	 heterogeneity,	 and	CEC	has	 been	used	 as	 an	 indicator	
of	soil	fertility,	but	these	variables	have	not	been	found	significant	in	
species	 distribution	 and	 diversity	 assessments	 (Kissling	 et	al.,	 2012;	
McPherson,	2014).	 In	our	analyses,	the	ranking	of	fern	taxa	by	their	
cation	concentration	optima	could,	to	some	degree,	be	reconstructed	
using	a	combination	of	soil	class	data	from	HWSD	and	CEC	data	from	
SoilGrids.	On	the	other	hand,	species	tolerances	had	low	correspon-
dence	with	the	estimate	tolerances	based	on	field	data	in	these	analy-
ses.	As	the	regional	differences	in	CEC	values	seemed	to	be	excessive	
and	 the	 HWSD	 suffered	 from	 georeferencing	 issues,	 these	 results	
are	probably	very	sensitive	 to	 the	exact	geographic	positions	of	 the	
sampling	points.	Soil	classification	data	based	on	the	WRB-	FAO	sys-
tem	are	available	 in	all	 three	digital	 soil	maps,	but	 this	classification	

does	not	necessarily	reflect	those	soil	properties	that	are	physiolog-
ically	most	 relevant	 for	 plant	 species	 (Grunwald	 et	al.,	 2011;	 Lips	&	
Duivenvoorden,	1996;	Sollins,	1998).

4.4 | Perspectives on soil mapping in Amazonia

Our	results	showed	that	species	edaphic	affinites	for	soil	cation	con-
centration	had	low	correspondence	when	derived	using	data	from	
soil	samples	versus	soil	class	information	from	soil	maps.	Although	
the	rank	orders	were	similar	for	optima	derived	from	map	data	ver-
sus	field	data,	the	actual	positions	of	the	optima	were	more	similar	
for	the	map-	based	data	and	also	species	tolerances	were	broader.	
This	 suggests	 that	 predictions	 based	 on	 single	 data	 layers	 will	
probably	 overestimate	 the	 suitable	 areas	 for	 species	 occurrence.	

F IGURE  6 Optima	(circles)	and	tolerances	(horizontal	bars)	of	thirteen	fern	taxa	along	six	different	edaphic	gradients.	The	values	were	
combined	by	taking	the	minimum	and	maximum	tolerances	of	each	species	from	PPBio	and	UTU	datasets.	(a)	Estimated	optima	and	tolerances	
for	measured	soil	cation	concentration	(SCC)	as	obtained	by	combining	floristic	and	edaphic	field	data	from	the	PPBio	and	UTU	datasets.	(b)	
Estimated	optima	and	tolerances	for	cation	exchange	capacity	(CEC)	as	obtained	by	combining	floristic	field	data	with	SoilGrids	CEC	data.	
(c-	f)	Estimated	optima	and	tolerances	for	fitted	values	of	soil	cation	concentration	as	obtained	by	combining	floristic	field	data	and	the	best	
regression	model	for	soil	data	(see	Table	2).	Taxa	are	sorted	according	to	their	optimum	in	(a)
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However,	regression	models	that	used	several	 layers	from	the	soil	
maps	simultaneously	gave	better	results,	and	might	provide	an	ap-
proach	to	extracting	more	useful	environmental	data	for	SDMs.

Ideally,	soil	maps	themselves	will	gradually	become	more	accu-
rate.	A	critical	point	here	is	that	more	validation	points	are	needed.	
Initiatives	such	as	the	World	Soil	Information	System	(WoSIS,	Batjes	
et	al.,	2017)	and	the	Global	Soil	Information	Facilities	(GSIF,	http://
www.isric.org/explore/gsif)	are	therefore	welcomed.	These	encour-
age	 the	 establishment	 of	 open	 databases	with	 standardized	 sam-
pling	and	laboratory	methods	for	measuring	soil	properties.	The	new	
validation	points	can	then	be	used	to	update	the	soil	maps	(Hengl	
et	al.,	 2017).	 In	 addition,	 covariates	 are	 of	 key	 importance	 to	 im-
prove	map	resolution	and	accuracy,	especially	in	areas	where	no	val-
idation	points	exist.	The	SRTM	topography	data	have	already	been	
used	to	improve	the	accuracy	of	SoilGrids,	and	new	products	from	
earth	 observation	 satellites	 and	 other	 remotely	 sensed	 data	 may	
provide	further	improvements.

5  | CONCLUSIONS

We	found	that	even	when	field	data	show	Amazonian	plant	taxa	to	
have	highly	specific	soil	cation	concentration	associations,	 it	 is	diffi-
cult	to	reconstruct	these	using	the	information	contained	in	currently	
available	 digital	 soil	 maps	 (SOTERLAC,	 HWSD,	 SoilGrids).	 None	 of	
these	provides	data	on	soil	cation	concentration	or	other	soil	proper-
ties	that	have	been	found	important	for	plant	species	distributions	in	
ecological	 studies.	 The	 ranking	of	 species’	 soil	 cation	 concentration	
optima	was	poorly	reconstructed	by	optima	based	on	the	cation	ex-
change	capacity	(CEC)	values	available	in	SoilGrids.	Regression	models	
based	on	the	soil	class	information	available	in	HWSD	and	SoilGrids	
succeeded	better,	 but	 even	here	 the	 species	 tolerances	overlapped	
more	 than	 those	based	on	 field	data,	causing	 the	species	 to	appear	
less	segregated	in	their	edaphic	niches	than	they	are	according	to	field	
data.	The	SOTERLAC	and	HWSD	maps	suffer	 from	major	georefer-
encing	errors,	but	 these	have	been	corrected	 in	 the	new	version	of	
SoilGrids	at	250-	m	resolution.	Overall,	our	analyses	indicated	that	soil	
maps	for	Amazonia	still	need	to	be	improved	in	order	to	provide	bet-
ter	data	layers	for	the	assessment	of	species–soil	associations	and	for	
species	distribution	modeling.
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There	is	increasing	evidence	that	soil	properties	in	Amazonian	lowland	rain	forests	are	highly	heterogeneous	at	various	scales,	and	that	floristic	
patterns	reflect	 the	patterns	 in	soil	properties.	Here	we	evaluate	the	potential	of	 three	freely	available	digital	soil	maps	that	cover	the	entire	
Amazon	basin	 (SOTERLAC,	HWSD,	and	SoilGrids)	 for	mapping	species	edaphic	affinities.	We	concluded	that	digital	soil	maps	still	need	to	be	 
improved	in	order	to	provide	reliable	models	of	the	edaphic	environment	for	species	distribution	modeling	and	other	ecological	studies	in	Amazonia.	
The	problems	and	prospects	of	soil	maps	in	ecological	studies	are	discussed	in	the	article.




